Estimation of classrooms occupancy using a multi-layer perceptron
نویسندگان
چکیده
This paper presents a multi-layer perceptron model for the estimation of classrooms number of occupants from sensed indoor environmental data–relative humidity, air temperature, and carbon dioxide concentration. The modelling datasets were collected from two classrooms in the Secondary School of Pombal, Portugal. The number of occupants and occupation periods were obtained from class attendance reports. However, post-class occupancy was unknown and the developed model is used to reconstruct the classrooms occupancy by filling the unreported periods. Different model structure and environment variables combination were tested. The model with best accuracy had as input vector 10 variables of five averaged time intervals of relative humidity and carbon dioxide concentration. The model presented a mean square error of 1.99, coefficient of determination of 0.96 with a significance of p-value < 0.001, and a mean absolute error of 1 occupant. These results show promising estimation capabilities in uncertain indoor environment conditions. E. Rodrigues, L. Dias Pereira, A. R. Gaspar, Á. Gomes, M. C. Gameiro da Silva 2
منابع مشابه
Investigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کاملVolumetric soil moisture estimation using Sentinel 1 and 2 satellite images
Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...
متن کاملA New Hybrid model of Multi-layer Perceptron Artificial Neural Network and Genetic Algorithms in Web Design Management Based on CMS
The size and complexity of websites have grown significantly during recent years. In line with this growth, the need to maintain most of the resources has been intensified. Content Management Systems (CMSs) are software that was presented in accordance with increased demands of users. With the advent of Content Management Systems, factors such as: domains, predesigned module’s development, grap...
متن کاملNew full adders using multi-layer perceptron network
How to reconfigure a logic gate for a variety of functions is an interesting topic. In this paper, a different method of designing logic gates are proposed. Initially, due to the training ability of the multilayer perceptron neural network, it was used to create a new type of logic and full adder gates. In this method, the perceptron network was trained and then tested. This network was 100% ac...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1702.02125 شماره
صفحات -
تاریخ انتشار 2016